This paper focuses on Distributed State Estimation over a peer-to-peer sensor network composed by possible low-computational sensors. We propose a new l-step Neighbourhood Distributed Moving Horizon Estimation technique with fused arrival cost and pre-estimation, improving the accuracy of the estimation, while reducing the computation time compared to other approaches from the literature. Simultaneously, convergence of the estimation error is improved by means of spreading the information amongst neighbourhoods, which comes natural in the sliding window data present in the Moving Horizon Estimation paradigm.

A New l-step Neighbourhood Distributed Moving Horizon Estimator

Antonello Venturino
;
2021-01-01

Abstract

This paper focuses on Distributed State Estimation over a peer-to-peer sensor network composed by possible low-computational sensors. We propose a new l-step Neighbourhood Distributed Moving Horizon Estimation technique with fused arrival cost and pre-estimation, improving the accuracy of the estimation, while reducing the computation time compared to other approaches from the literature. Simultaneously, convergence of the estimation error is improved by means of spreading the information amongst neighbourhoods, which comes natural in the sliding window data present in the Moving Horizon Estimation paradigm.
2021
978-1-6654-3659-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/360767
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact