Satellite, fifth generation (5G), and sixth generation (6G) mobile communication systems operating at micro- and millimeter wave frequencies are an essential pillar in advanced network architectures for high-throughput low latency services. The decisive factors for this current development were the significant technological advances accomplished over the last two decades, which meanwhile enable highly integrated, feature-rich, and cost-effective realizations of complete phased array transceiver topologies. Motivated through the today's trend for heterogeneous constellation types to provide truly global coverage, this contribution reviews the current state-of-the-art of electronically steerable antennas for terrestrial and non-terrestrial communication systems up to 100 GHz. First, the potential benefits and limitations of the most relevant technologies are contrasted and put into context with recent system architectures for adaptive beamforming. Their operating principles along with various experimental implementation and achievements providing advanced capabilities such as multi-band/multi-beam operation, polarization agility, and wide-angle scanning are thoroughly presented. Particular emphasis is laid on the review of direct radiating arrays, quasi-optical antenna configurations, and metasurface-based antennas.

Electronically Steerable Antennas for Future Heterogeneous Communication Networks: Review and Perspectives

Boccia, L;Arnieri, E;
2022-01-01

Abstract

Satellite, fifth generation (5G), and sixth generation (6G) mobile communication systems operating at micro- and millimeter wave frequencies are an essential pillar in advanced network architectures for high-throughput low latency services. The decisive factors for this current development were the significant technological advances accomplished over the last two decades, which meanwhile enable highly integrated, feature-rich, and cost-effective realizations of complete phased array transceiver topologies. Motivated through the today's trend for heterogeneous constellation types to provide truly global coverage, this contribution reviews the current state-of-the-art of electronically steerable antennas for terrestrial and non-terrestrial communication systems up to 100 GHz. First, the potential benefits and limitations of the most relevant technologies are contrasted and put into context with recent system architectures for adaptive beamforming. Their operating principles along with various experimental implementation and achievements providing advanced capabilities such as multi-band/multi-beam operation, polarization agility, and wide-angle scanning are thoroughly presented. Particular emphasis is laid on the review of direct radiating arrays, quasi-optical antenna configurations, and metasurface-based antennas.
2022
Satellite communications on the move (SOTM)
fifth generation (5G)
sixth generation (6G)
hybrid satellite constellations
aerial networks
electronic steering
phased array
antennas
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/361022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 23
social impact