We present a nonequilibrium Green's-functional approach to study the dynamics following a quench in weakly interacting Bose-Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one and two dimensions. In particular, we show how our approach is able to recover the crossover from the ballistic to the diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for one- and two-dimensional BHMs, finding that, surprisingly, at high temperature a ballistic evolution is restored.

Self-consistent Keldysh approach to quenches in the weakly interacting Bose-Hubbard model

Lo Gullo N.;Dell'Anna L.
2016-01-01

Abstract

We present a nonequilibrium Green's-functional approach to study the dynamics following a quench in weakly interacting Bose-Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedin's equations for the interacting single-particle Green's function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Green's function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one and two dimensions. In particular, we show how our approach is able to recover the crossover from the ballistic to the diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for one- and two-dimensional BHMs, finding that, surprisingly, at high temperature a ballistic evolution is restored.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/361118
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact