Measurements of transverse energy-energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers Q. The strong coupling constant alpha(s) is extracted as a function of Q, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy-energy correlation distributions across different kinematic regions yields a value of alpha(s)( mZ) = 0.1175 +/- 0.0006 (exp.)(+0.0034) (-0.0017) (theo.), while the global fit to the asymmetry distributions yields alpha(s)(m(Z)) = 0.1185 +/- 0.0009 (exp.)(+0.0025)(-0.0012)(theo.).

Determination of the strong coupling constant from transverse energy$-$energy correlations in multijet events at $\sqrt{s} = 13$ TeV with the ATLAS detector

Capua, M;Mastroberardino, A;Meoni, E;Schioppa, M;Tassi, E;
2023-01-01

Abstract

Measurements of transverse energy-energy correlations and their associated azimuthal asymmetries in multijet events are presented. The analysis is performed using a data sample corresponding to 139 fb(-1) of proton-proton collisions at a centre-of-mass energy of root s = 13TeV, collected with the ATLAS detector at the Large Hadron Collider. The measurements are presented in bins of the scalar sum of the transverse momenta of the two leading jets and unfolded to particle level. They are then compared to next-to-next-to-leading-order perturbative QCD calculations for the first time, which feature a significant reduction in the theoretical uncertainties estimated using variations of the renormalisation and factorisation scales. The agreement between data and theory is good, thus providing a precision test of QCD at large momentum transfers Q. The strong coupling constant alpha(s) is extracted as a function of Q, showing a good agreement with the renormalisation group equation and with previous analyses. A simultaneous fit to all transverse energy-energy correlation distributions across different kinematic regions yields a value of alpha(s)( mZ) = 0.1175 +/- 0.0006 (exp.)(+0.0034) (-0.0017) (theo.), while the global fit to the asymmetry distributions yields alpha(s)(m(Z)) = 0.1185 +/- 0.0009 (exp.)(+0.0025)(-0.0012)(theo.).
2023
Hadron-Hadron Scattering
Jet Physics
Jets
High Energy Physics - Experiment
High Energy Physics - Experiment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/361164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact