Computations of screening masses in finite-temperature QCD at finite density are plagued by the sign problem and have been performed so far with an imaginary chemical potential. Here, we use a dual formulation of a Polyakov-loop model which allows the determination of screening masses at real baryon chemical potential. This is a second paper in a series devoted to a detailed study of dual Polyakov-loop models at finite density. While the first paper was mainly devoted to establishing the phase diagram of the model, here we compute correlation functions of the Polyakov loops and the second-moment correlation length at non-zero chemical potential. This enables us to evaluate numerically the screening masses from correlations of the real and imaginary parts of the Polyakov loops. We also compute these masses in the mean-field approximation and compare with numerical results. In addition, we provide a quantitative improvement of the general phase diagram presented in the first paper.

Dual simulation of a Polyakov loop model at finite baryon density: Correlations and screening masses

Borisenko, O.
Membro del Collaboration Group
;
Chelnokov, V.
Membro del Collaboration Group
;
Papa, A.
Membro del Collaboration Group
2024-01-01

Abstract

Computations of screening masses in finite-temperature QCD at finite density are plagued by the sign problem and have been performed so far with an imaginary chemical potential. Here, we use a dual formulation of a Polyakov-loop model which allows the determination of screening masses at real baryon chemical potential. This is a second paper in a series devoted to a detailed study of dual Polyakov-loop models at finite density. While the first paper was mainly devoted to establishing the phase diagram of the model, here we compute correlation functions of the Polyakov loops and the second-moment correlation length at non-zero chemical potential. This enables us to evaluate numerically the screening masses from correlations of the real and imaginary parts of the Polyakov loops. We also compute these masses in the mean-field approximation and compare with numerical results. In addition, we provide a quantitative improvement of the general phase diagram presented in the first paper.
2024
Effective 3D Polyakov loop models of QCD
Dual formulations
Phase diagram and correlation functions
Monte Carlo simulations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/361717
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact