We connect in a grid-enabled pipeline an ontology-based environment for proteomics spectra management with a machine learning platform for unbiased predictive analysis. We exploit two existing software platforms (MS-Analyzer and BioDCV), the emerging proteomics standards, and the middleware and computing resources of the EGEE Biomed VO grid infrastructure. In the setup, BioDCV is accessed by the MS-Analyzer workflow as a Web service, thus providing a complete grid environment for proteomics data analysis. Predictive classification studies on MALDI-TOF data based on this environment are presented.

A grid environment for high-throughput proteomics

VELTRI PIERANGELO;CANNATARO M
2007-01-01

Abstract

We connect in a grid-enabled pipeline an ontology-based environment for proteomics spectra management with a machine learning platform for unbiased predictive analysis. We exploit two existing software platforms (MS-Analyzer and BioDCV), the emerging proteomics standards, and the middleware and computing resources of the EGEE Biomed VO grid infrastructure. In the setup, BioDCV is accessed by the MS-Analyzer workflow as a Web service, thus providing a complete grid environment for proteomics data analysis. Predictive classification studies on MALDI-TOF data based on this environment are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/362390
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact