A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put in the problem of finding a single dense subgraph, only recently the focus has been shifted to the problem of finding a set of densest subgraphs. An approach introduced to find possible overlapping subgraphs is the Top-k-Overlapping Densest Subgraphs problem. Given an integer k >= 1 and a parameter lambda > 0, the goal of this problem is to find a set of k dense subgraphs that may share some vertices. The objective function to be maximized takes into account the density of the subgraphs, the parameter lambda and the distance between each pair of subgraphs in the solution. The Top-k-Overlapping Densest Subgraphs problem has been shown to admit a 1/10-factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improve the approximation factor to 1/2, when k is smaller than the number of vertices in the graph, and to 2/3, when k is a constant. For the computational complexity, we show that the problem is NP-hard even when k = 3.

Top-k overlapping densest subgraphs: approximation algorithms and computational complexity

Hosseinzadeh, Mohammad Mehdi;
2020-01-01

Abstract

A central problem in graph mining is finding dense subgraphs, with several applications in different fields, a notable example being identifying communities. While a lot of effort has been put in the problem of finding a single dense subgraph, only recently the focus has been shifted to the problem of finding a set of densest subgraphs. An approach introduced to find possible overlapping subgraphs is the Top-k-Overlapping Densest Subgraphs problem. Given an integer k >= 1 and a parameter lambda > 0, the goal of this problem is to find a set of k dense subgraphs that may share some vertices. The objective function to be maximized takes into account the density of the subgraphs, the parameter lambda and the distance between each pair of subgraphs in the solution. The Top-k-Overlapping Densest Subgraphs problem has been shown to admit a 1/10-factor approximation algorithm. Furthermore, the computational complexity of the problem has been left open. In this paper, we present contributions concerning the approximability and the computational complexity of the problem. For the approximability, we present approximation algorithms that improve the approximation factor to 1/2, when k is smaller than the number of vertices in the graph, and to 2/3, when k is a constant. For the computational complexity, we show that the problem is NP-hard even when k = 3.
2020
Graph mining
Graph algorithms
Densest subgraph
Approximation algorithms
Computational complexity
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/362877
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact