In some areas of southern Italy, the change in land use over the last 4–5 decades has increased pressure on land and water resources and caused different forms of soil degradation. In order to mitigate the magnitude of soil erosion, different strategies that include construction of flood control structures and reforestation programs have been done in several areas. However, quantifying the effectiveness of these strategies is difficult in absence of direct measurements of soil erosion. To cover this information gap, the use of distributed numerical models coupled with measurements of the radionuclide cesium-137 (137Cs) offers a good alternative to the classic experimental sites (plot, catchments) that, on the contrary, require long term datasets to produce reliable estimates of soil loss. In this paper, measurements of 137Cs in a floodplain area are firstly described for a representative Calabrian catchment as an example to reconstruct the trend of soil deposition rates during the last six decades. These measurements have been integrated with estimates of soil loss obtained with the Revised Universal Soil Loss Equation (RUSLE) model for which land use maps of different periods are available. The final comparison between estimates of soil erosion provided by the RUSLE at catchment scale and sedimentation rates derived from 137Cs measurements on depositional areas allowed interesting information on the trend of soil erosion and deposition rates in these areas to be obtained.

Using Cs-137 measurements and RUSLE model to explore the effect of land use changes on soil erosion and deposition rates in a mid-sized catchment in southern Italy

Callegari G.;Infusino E.
2023-01-01

Abstract

In some areas of southern Italy, the change in land use over the last 4–5 decades has increased pressure on land and water resources and caused different forms of soil degradation. In order to mitigate the magnitude of soil erosion, different strategies that include construction of flood control structures and reforestation programs have been done in several areas. However, quantifying the effectiveness of these strategies is difficult in absence of direct measurements of soil erosion. To cover this information gap, the use of distributed numerical models coupled with measurements of the radionuclide cesium-137 (137Cs) offers a good alternative to the classic experimental sites (plot, catchments) that, on the contrary, require long term datasets to produce reliable estimates of soil loss. In this paper, measurements of 137Cs in a floodplain area are firstly described for a representative Calabrian catchment as an example to reconstruct the trend of soil deposition rates during the last six decades. These measurements have been integrated with estimates of soil loss obtained with the Revised Universal Soil Loss Equation (RUSLE) model for which land use maps of different periods are available. The final comparison between estimates of soil erosion provided by the RUSLE at catchment scale and sedimentation rates derived from 137Cs measurements on depositional areas allowed interesting information on the trend of soil erosion and deposition rates in these areas to be obtained.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/362966
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact