Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology
Baratta M.;Nicoletta F. P.;De Filpo G.
2024-01-01
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.