Chronic kidney disease (CKD), defined as the presence of albuminuria and/or reduction in estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, is considered a growing public health problem, with its prevalence and incidence having almost doubled in the past three decades. The implementation of novel biomarkers in clinical practice is crucial, since it could allow earlier diagnosis and lead to an improvement in CKD outcomes. Nevertheless, a clear guidance on how to develop biomarkers in the setting of CKD is not yet available. The aim of this review is to report the framework for implementing biomarkers in observational and intervention studies. Biomarkers are classified as either prognostic or predictive; the first type is used to identify the likelihood of a patient to develop an endpoint regardless of treatment, whereas the second type is used to determine whether the patient is likely to benefit from a specific treatment. Many single assays and complex biomarkers were shown to improve the prediction of cardiovascular and kidney outcomes in CKD patients on top of the traditional risk factors. Biomarkers were also shown to improve clinical trial designs. Understanding the correct ways to validate and implement novel biomarkers in CKD will help to mitigate the global burden of CKD and to improve the individual prognosis of these high-risk patients.

Contribution of Predictive and Prognostic Biomarkers to Clinical Research on Chronic Kidney Disease

Provenzano, Michele;
2020-01-01

Abstract

Chronic kidney disease (CKD), defined as the presence of albuminuria and/or reduction in estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, is considered a growing public health problem, with its prevalence and incidence having almost doubled in the past three decades. The implementation of novel biomarkers in clinical practice is crucial, since it could allow earlier diagnosis and lead to an improvement in CKD outcomes. Nevertheless, a clear guidance on how to develop biomarkers in the setting of CKD is not yet available. The aim of this review is to report the framework for implementing biomarkers in observational and intervention studies. Biomarkers are classified as either prognostic or predictive; the first type is used to identify the likelihood of a patient to develop an endpoint regardless of treatment, whereas the second type is used to determine whether the patient is likely to benefit from a specific treatment. Many single assays and complex biomarkers were shown to improve the prediction of cardiovascular and kidney outcomes in CKD patients on top of the traditional risk factors. Biomarkers were also shown to improve clinical trial designs. Understanding the correct ways to validate and implement novel biomarkers in CKD will help to mitigate the global burden of CKD and to improve the individual prognosis of these high-risk patients.
2020
CKD
biomarkers
cardiovascular disease
end-stage kidney disease (ESKD)
epidemiology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/366365
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact