The self-regulated recognition of human activities from time-series smartphone sensor data is a growing research area in smart and intelligent health care. Deep learning (DL) approaches have exhibited improvements over traditional machine learning (ML) models in various domains, including human activity recognition (HAR). Several issues are involved with traditional ML approaches; these include handcrafted feature extraction, which is a tedious and complex task involving expert domain knowledge, and the use of a separate dimensionality reduction module to overcome overfitting problems and hence provide model generalization. In this article, we propose a DL-based approach for activity recognition with smartphone sensor data, i.e., accelerometer and gyroscope data. Convolutional neural networks (CNNs), autoencoders (AEs), and long short-term memory (LSTM) possess complementary modeling capabilities, as CNNs are good at automatic feature extraction, AEs are used for dimensionality reduction and LSTMs are adept at temporal modeling. In this study, we take advantage of the complementarity of CNNs, AEs, and LSTMs by combining them into a unified architecture. We explore the proposed architecture, namely, 'ConvAE-LSTM', on four different standard public datasets (WISDM, UCI, PAMAP2, and OPPORTUNITY). The experimental results indicate that our novel approach is practical and provides relative smartphone-based HAR solution performance improvements in terms of computational time, accuracy, F1-score, precision, and recall over existing state-of-the-art methods.

ConvAE-LSTM: Convolutional Autoencoder Long Short-Term Memory Network for Smartphone-Based Human Activity Recognition

Thakur D.
Writing – Original Draft Preparation
;
2022-01-01

Abstract

The self-regulated recognition of human activities from time-series smartphone sensor data is a growing research area in smart and intelligent health care. Deep learning (DL) approaches have exhibited improvements over traditional machine learning (ML) models in various domains, including human activity recognition (HAR). Several issues are involved with traditional ML approaches; these include handcrafted feature extraction, which is a tedious and complex task involving expert domain knowledge, and the use of a separate dimensionality reduction module to overcome overfitting problems and hence provide model generalization. In this article, we propose a DL-based approach for activity recognition with smartphone sensor data, i.e., accelerometer and gyroscope data. Convolutional neural networks (CNNs), autoencoders (AEs), and long short-term memory (LSTM) possess complementary modeling capabilities, as CNNs are good at automatic feature extraction, AEs are used for dimensionality reduction and LSTMs are adept at temporal modeling. In this study, we take advantage of the complementarity of CNNs, AEs, and LSTMs by combining them into a unified architecture. We explore the proposed architecture, namely, 'ConvAE-LSTM', on four different standard public datasets (WISDM, UCI, PAMAP2, and OPPORTUNITY). The experimental results indicate that our novel approach is practical and provides relative smartphone-based HAR solution performance improvements in terms of computational time, accuracy, F1-score, precision, and recall over existing state-of-the-art methods.
2022
autoencoder
Deep Learning
human activity recognition
smartphone sensors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/369763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 37
social impact