Human activity recognition (HAR) is an eminent area of research due to its extensive scope of applications in remote health monitoring, sports, smart home, and many more. Smartphone-based HAR systems use high-dimensional sensor data to infer human physical activities. Researchers continuously endeavor to select pertinent and non-redundant features without compromising the classification accuracy. In this work, our aim is to build an efficient HAR model that not only extracts the most relevant features from the 3-axial accelerometer and gyroscope signal data but also enhances the classification accuracy of the HAR system, without data loss using time-frequency domain features. We propose a feature selection method based on guided regularized random forest (GRRF) to determine the most pertinent and non-redundant features to reduce the time to recognize the human activities efficiently. After selecting the most relevant features, a support vector machine (SVM) is used to identify various human physical activities. The UCI public dataset and a self-collected dataset are used to assess the generalization capability and performance of the proposed feature selection method. Eventually, the accuracy reached 99.10% and 99.30% on the self-collected and UCI HAR datasets, respectively.
Guided regularized random forest feature selection for smartphone based human activity recognition
Thakur D.
Writing – Original Draft Preparation
;
2023-01-01
Abstract
Human activity recognition (HAR) is an eminent area of research due to its extensive scope of applications in remote health monitoring, sports, smart home, and many more. Smartphone-based HAR systems use high-dimensional sensor data to infer human physical activities. Researchers continuously endeavor to select pertinent and non-redundant features without compromising the classification accuracy. In this work, our aim is to build an efficient HAR model that not only extracts the most relevant features from the 3-axial accelerometer and gyroscope signal data but also enhances the classification accuracy of the HAR system, without data loss using time-frequency domain features. We propose a feature selection method based on guided regularized random forest (GRRF) to determine the most pertinent and non-redundant features to reduce the time to recognize the human activities efficiently. After selecting the most relevant features, a support vector machine (SVM) is used to identify various human physical activities. The UCI public dataset and a self-collected dataset are used to assess the generalization capability and performance of the proposed feature selection method. Eventually, the accuracy reached 99.10% and 99.30% on the self-collected and UCI HAR datasets, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.