A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized. The ZnO-to-GO ratio was determined through thermogravimetric analysis, while scanning electron microscopy and transmission electron microscopy were used to provide insight into the morphology of the nanocomposite. Using energy-dispersive X-ray spectroscopy, it was possible to confirm that the graphene flakes were homogeneously coated with ZnO. The crystallite size of the ZnO nanoparticles in the new composite was determined using X-ray powder diffraction. The capacity of Z-G to enhance the toxicity of the anticancer drug Paclitaxel towards breast cancer cells was assessed via a cell viability study, showing the remarkable anticancer activity of the obtained system. Such results support the potential use of Z-G as an anticancer agent in combination with a common chemotherapeutic like Paclitaxel, leading to new chemotherapeutic formulations.

ZnO–Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells

Cirillo G.;Curcio M.;Tucci P.;Iemma F.;
2024-01-01

Abstract

A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized. The ZnO-to-GO ratio was determined through thermogravimetric analysis, while scanning electron microscopy and transmission electron microscopy were used to provide insight into the morphology of the nanocomposite. Using energy-dispersive X-ray spectroscopy, it was possible to confirm that the graphene flakes were homogeneously coated with ZnO. The crystallite size of the ZnO nanoparticles in the new composite was determined using X-ray powder diffraction. The capacity of Z-G to enhance the toxicity of the anticancer drug Paclitaxel towards breast cancer cells was assessed via a cell viability study, showing the remarkable anticancer activity of the obtained system. Such results support the potential use of Z-G as an anticancer agent in combination with a common chemotherapeutic like Paclitaxel, leading to new chemotherapeutic formulations.
2024
cancer therapy
graphene oxide
nanocomposite
Paclitaxel delivery
zinc oxide nanoparticles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/371877
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact