To achieve sustainable cities and communities, it is necessary to decarbonize existing buildings. Actions need to be taken to reduce the buildings' energy demand and ensure that the low remaining demand is met by energy produced from renewable sources. This leads to Net Zero Energy Buildings (NZEBs), whose impact on energy consumption is zero or positive, meaning that they are able to produce more energy than they require. The "zero" objective may be difficult to reach in hot and humid climates, where the cooling demand is prevalent. In this case, a combination of active and passive measures, together with appropriate interaction with users, is a viable way to obtain NZEBs. The present study aims to explore technological solutions for renovating existing buildings to NZEBs in a tropical climate. The analysis is developed through a parametric analysis, a sensitivity analysis, and an optimization directed at minimizing the site's net energy and hours of discomfort. Evaluations are conducted for a case study consisting of a single-family house located in Panama City. The results showed that photovoltaic size, cooling operation schedule, and cooling set-point temperature are the most influential variables for the attainment of NZEBs in a hot climate. Regarding the building envelope, the outcomes suggest the low insulation of dispersing structures and local solar shading of windows as recommended measures.
Retrofit Measures for Achieving NZE Single-Family Houses in a Tropical Climate via Multi-Objective Optimization
Carpino, CristinaMethodology
;Mora, Dafni;Arcuri, Natale
2024-01-01
Abstract
To achieve sustainable cities and communities, it is necessary to decarbonize existing buildings. Actions need to be taken to reduce the buildings' energy demand and ensure that the low remaining demand is met by energy produced from renewable sources. This leads to Net Zero Energy Buildings (NZEBs), whose impact on energy consumption is zero or positive, meaning that they are able to produce more energy than they require. The "zero" objective may be difficult to reach in hot and humid climates, where the cooling demand is prevalent. In this case, a combination of active and passive measures, together with appropriate interaction with users, is a viable way to obtain NZEBs. The present study aims to explore technological solutions for renovating existing buildings to NZEBs in a tropical climate. The analysis is developed through a parametric analysis, a sensitivity analysis, and an optimization directed at minimizing the site's net energy and hours of discomfort. Evaluations are conducted for a case study consisting of a single-family house located in Panama City. The results showed that photovoltaic size, cooling operation schedule, and cooling set-point temperature are the most influential variables for the attainment of NZEBs in a hot climate. Regarding the building envelope, the outcomes suggest the low insulation of dispersing structures and local solar shading of windows as recommended measures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.