We report a study on the SnSx (x < 1) decoration of porous TiO2 nanoparticle thin films using the ionic layer adsorption and reaction (ILAR) method. UV-vis absorption measurements revealed a direct bandgap of 1.40–2.10 eV for SnSx (with x = 0.85) and 3.15 eV for TiO2. Degradation of rhodamine B molecules in aqueous solutions shows that coating with a Sn-to-Ti molar ratio of 2% improves the efficiency of the photocatalytic performance of titanium dioxide, but excessive coverage decreases it. We interpret the observed behavior as due to a delicate balance of many competing factors. The formation of intimate interfaces guaranteed by the ILAR growth technique and a nearly optimal alignment of conduction band edges facilitate electron transfer, reducing electron–hole recombination rates. However, the valence hole transfer from TiO2 to SnS reduces the oxidative potential, which is crucial in the degradation mechanism.

Decorating TiO2 Nanoparticle Thin Film with SnSx (x < 1): Preparation, Characterization, and Photocatalytic Activity

Fang Xu
;
Nicola Scaramuzza;Carlo Versace
2024-01-01

Abstract

We report a study on the SnSx (x < 1) decoration of porous TiO2 nanoparticle thin films using the ionic layer adsorption and reaction (ILAR) method. UV-vis absorption measurements revealed a direct bandgap of 1.40–2.10 eV for SnSx (with x = 0.85) and 3.15 eV for TiO2. Degradation of rhodamine B molecules in aqueous solutions shows that coating with a Sn-to-Ti molar ratio of 2% improves the efficiency of the photocatalytic performance of titanium dioxide, but excessive coverage decreases it. We interpret the observed behavior as due to a delicate balance of many competing factors. The formation of intimate interfaces guaranteed by the ILAR growth technique and a nearly optimal alignment of conduction band edges facilitate electron transfer, reducing electron–hole recombination rates. However, the valence hole transfer from TiO2 to SnS reduces the oxidative potential, which is crucial in the degradation mechanism.
2024
nanoparticle thin film; coating; photocatalysis; nano-heterojunction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/372917
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact