Herewith, we propose a comprehensive study of the vibrational response of chemical doping of free-standing graphene (Gr). Complementary insights on the increased metallicity have been demonstrated by the emerging plasmon excitation in the upper Dirac cone, observed by inelastic electron scattering and core-level photoemission. The electron migration in the pi* upper Dirac band unveils an electron-phonon coupling of contaminant-free K-doped Gr, as evidenced by advanced micro-Raman spectroscopy in ultrahigh vacuum ambient. The vibrational response of potassium-doped Gr correlated with the charge injected in the upper Dirac cone, and the Fermi level shift unravel a notable electron-phonon coupling, which is stronger than that observed for gate voltage-doped Gr.
Charge Effects and Electron Phonon Coupling in Potassium-Doped Graphene
Mariani C.;Caruso T.;De Luca O.;Papagno M.;Daniela Pacile';
2024-01-01
Abstract
Herewith, we propose a comprehensive study of the vibrational response of chemical doping of free-standing graphene (Gr). Complementary insights on the increased metallicity have been demonstrated by the emerging plasmon excitation in the upper Dirac cone, observed by inelastic electron scattering and core-level photoemission. The electron migration in the pi* upper Dirac band unveils an electron-phonon coupling of contaminant-free K-doped Gr, as evidenced by advanced micro-Raman spectroscopy in ultrahigh vacuum ambient. The vibrational response of potassium-doped Gr correlated with the charge injected in the upper Dirac cone, and the Fermi level shift unravel a notable electron-phonon coupling, which is stronger than that observed for gate voltage-doped Gr.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.