Let $\Delta$ be a connected arc-transitive $G$-graph which is locally finite and locally quasiprimitive. Let $\{x,y\}$ be an edge of $\Delta$. A relation between $G_x^{[1]}/O_p(G_x^{[1]})$ and the existence of certain normal subgroups of $G_x^{\Delta (x)}$ and $G_{x,y}^{\Delta (x)}$ is established. This is then used to determine the vertex stabilizers of a class of 2-arc transitive graphs with trivial edge kernel.

On the structure of vertex stabilizers of arc-transitive locally quasiprimitive graphs

van Bon J.
2024-01-01

Abstract

Let $\Delta$ be a connected arc-transitive $G$-graph which is locally finite and locally quasiprimitive. Let $\{x,y\}$ be an edge of $\Delta$. A relation between $G_x^{[1]}/O_p(G_x^{[1]})$ and the existence of certain normal subgroups of $G_x^{\Delta (x)}$ and $G_{x,y}^{\Delta (x)}$ is established. This is then used to determine the vertex stabilizers of a class of 2-arc transitive graphs with trivial edge kernel.
2024
group amalgams
arc-transitive graphs
locally s-arc-transitive graphs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/373617
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact