Address decoders are integral components of random access memories. In higher-performance computing, the timing of address decoders is often critical, especially in applications such as translation lookaside buffer (TLB) and first level data cache. On the other hand, memory power budget and energy consumption are equally critically important for battery-powered devices. Dual Mode Logic (DML) has been shown to combine the support for both requirements in a single circuit. We present a novel DML based address decoder design and compare it with conventional static CMOS and np-CMOS address decoders. Simulations show that DML based address decoder in dynamic mode achieves 31% lower delay compared to conventional static CMOS implementation. In static mode, DML based address decoder reduces the energy consumption by 29% and reaches 10% lower energy-delay product compared to static CMOS address decoder. This is the first time DML is evaluated in 16nm FinFet process.

Dual mode logic address decoder

Taco Ramiro.;
2020-01-01

Abstract

Address decoders are integral components of random access memories. In higher-performance computing, the timing of address decoders is often critical, especially in applications such as translation lookaside buffer (TLB) and first level data cache. On the other hand, memory power budget and energy consumption are equally critically important for battery-powered devices. Dual Mode Logic (DML) has been shown to combine the support for both requirements in a single circuit. We present a novel DML based address decoder design and compare it with conventional static CMOS and np-CMOS address decoders. Simulations show that DML based address decoder in dynamic mode achieves 31% lower delay compared to conventional static CMOS implementation. In static mode, DML based address decoder reduces the energy consumption by 29% and reaches 10% lower energy-delay product compared to static CMOS address decoder. This is the first time DML is evaluated in 16nm FinFet process.
2020
Dual mode logic (DML)
Memory address decoder
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/376106
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact