In situ activation of Pt(IV) to Pt(II) species is a promising strategy to control the anticancer activity and overcome the off-target toxicity linked to classic platinum chemotherapeutic agents. Herein, we present the design and synthesis of two new asymmetric Pt(IV) derivatives of cisplatin and oxaliplatin (1.TARF and 2.TARF, respectively) bearing a covalently bonded 2',3',4',5'- tetraacetylriboflavin moiety (TARF). 1H and 195Pt NMR spec-troscopy shows that 1.TARF and 2.TARF can be effectively activated into toxic Pt(II) species, when incubated with nicotinamide adenine dinucleotide, sodium ascorbate, and glutathione in the dark and under light irradiation. Density functional theory studies of the dark Pt(IV)-to-Pt(II) conversion of 2.TARF indicate that the process involves first hydride transfer from the donor to the flavin moiety of the complex, followed by electron transfer to the Pt(IV) center. When administered to MDA-MB-231 breast cancer cells preincubated with nontoxic amounts of ascorbate, 2.TARF displays enhanced toxicity (between 1 and 2 orders of magnitude), suggesting that the generation of oxaliplatin can selectively be triggered by redox activation. Such an effect is not observed when 2 and TARF are coadministered under the same conditions, demonstrating that covalent binding of the flavin to the Pt complex is pivotal.
Flavin-Conjugated Pt(IV) Anticancer Agents
Scoditti, Stefano;Sicilia, Emilia;
2023-01-01
Abstract
In situ activation of Pt(IV) to Pt(II) species is a promising strategy to control the anticancer activity and overcome the off-target toxicity linked to classic platinum chemotherapeutic agents. Herein, we present the design and synthesis of two new asymmetric Pt(IV) derivatives of cisplatin and oxaliplatin (1.TARF and 2.TARF, respectively) bearing a covalently bonded 2',3',4',5'- tetraacetylriboflavin moiety (TARF). 1H and 195Pt NMR spec-troscopy shows that 1.TARF and 2.TARF can be effectively activated into toxic Pt(II) species, when incubated with nicotinamide adenine dinucleotide, sodium ascorbate, and glutathione in the dark and under light irradiation. Density functional theory studies of the dark Pt(IV)-to-Pt(II) conversion of 2.TARF indicate that the process involves first hydride transfer from the donor to the flavin moiety of the complex, followed by electron transfer to the Pt(IV) center. When administered to MDA-MB-231 breast cancer cells preincubated with nontoxic amounts of ascorbate, 2.TARF displays enhanced toxicity (between 1 and 2 orders of magnitude), suggesting that the generation of oxaliplatin can selectively be triggered by redox activation. Such an effect is not observed when 2 and TARF are coadministered under the same conditions, demonstrating that covalent binding of the flavin to the Pt complex is pivotal.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.