In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.

The enriched multinode Shepard collocation method for solving elliptic problems with singularities

Dell'Accio F.;Di Tommaso F.;
2024-01-01

Abstract

In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.
2024
Approximation by rational functions
Collocation method
Elliptic PDEs
Motz problem
Multinode Shepard method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/376984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact