Existence of sufficient conditions for unisolvence of Kansa unsymmetric collocation for PDEs is still an open problem. In this paper we make a first step in this direction, proving that unsymmetric collocation matrices with Thin-Plate Splines for the 2D Poisson equation are almost surely nonsingular, when the discretization points are chosen randomly on domains whose boundary has an analytic parametrization.

Unisolvence of random Kansa collocation by Thin-Plate Splines for the Poisson equation

Dell'Accio F.;
2024-01-01

Abstract

Existence of sufficient conditions for unisolvence of Kansa unsymmetric collocation for PDEs is still an open problem. In this paper we make a first step in this direction, proving that unsymmetric collocation matrices with Thin-Plate Splines for the 2D Poisson equation are almost surely nonsingular, when the discretization points are chosen randomly on domains whose boundary has an analytic parametrization.
2024
Kansa collocation
Poisson equation
Radial basis functions
Thin-Plate Splines
Unisolvence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/377248
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact