This work deals with a family of Hardy-Sobolev doubly critical system defined in Rn. More precisely, we provide a classification of the positive solutions, whose expressions comprise multiplies of solutions of the decoupled scalar equation. Our strategy is based on the symmetry of the solutions, deduced via a suitable version of the moving planes technique for cooperative singular systems, joint with the study of the asymptotic behavior by using the Moser's iteration scheme.

Classification of solutions to Hardy-Sobolev doubly critical systems

Esposito F.;Sciunzi B.
2024-01-01

Abstract

This work deals with a family of Hardy-Sobolev doubly critical system defined in Rn. More precisely, we provide a classification of the positive solutions, whose expressions comprise multiplies of solutions of the decoupled scalar equation. Our strategy is based on the symmetry of the solutions, deduced via a suitable version of the moving planes technique for cooperative singular systems, joint with the study of the asymptotic behavior by using the Moser's iteration scheme.
2024
Critical nonlinearities
Hardy potentials
Qualitative properties
Semilinear elliptic systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/377438
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact