Nowadays, moisture-swing adsorption technology still relies on quaternary ammonium resins with limited CO2 capacity under ambient air conditions. In this work, a groundbreaking moisture-driven sorbent is developed starting from commercial graphene flakes and using glycidyltrimethylammonium chloride for incorporation of CO2-sensitive quaternary ammonium functional groups. Boasting an outstanding CO2 capture performance under ultra-diluted conditions (namely, 3.24 mmol g(-1) at CO2 400 ppm and 20% RH), the functionalized sorbent (fGO) features clear competitive advantages over current technologies for direct air capture. Notably, fGO demonstrated unprecedented moisture-swing capacity, ease of regenerability, versatility, selectivity, and longevity. These distinctive features position the fGO as an advanced and promising solution, showcasing its potential to outperform existing methods for moisture-swing direct air capture of CO2.
Quaternized Graphene for High-Performance Moisture Swing Direct Air Capture of CO2
Nicotera I.;Simari C.
2024-01-01
Abstract
Nowadays, moisture-swing adsorption technology still relies on quaternary ammonium resins with limited CO2 capacity under ambient air conditions. In this work, a groundbreaking moisture-driven sorbent is developed starting from commercial graphene flakes and using glycidyltrimethylammonium chloride for incorporation of CO2-sensitive quaternary ammonium functional groups. Boasting an outstanding CO2 capture performance under ultra-diluted conditions (namely, 3.24 mmol g(-1) at CO2 400 ppm and 20% RH), the functionalized sorbent (fGO) features clear competitive advantages over current technologies for direct air capture. Notably, fGO demonstrated unprecedented moisture-swing capacity, ease of regenerability, versatility, selectivity, and longevity. These distinctive features position the fGO as an advanced and promising solution, showcasing its potential to outperform existing methods for moisture-swing direct air capture of CO2.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.