Background: The rewiring of molecular interactions in various conditions leads to distinct phenotypic outcomes. Differential network analysis (DINA) is dedicated to exploring these rewirings within gene and protein networks. Leveraging statistical learning and graph theory, DINA algorithms scrutinize alterations in interaction patterns derived from experimental data. Results: Introducing a novel approach to differential network analysis, we incorporate differential gene expression based on sex and gender attributes. We hypothesize that gene expression can be accurately represented through non-Gaussian processes. Our methodology involves quantifying changes in non-parametric correlations among gene pairs and expression levels of individual genes. Conclusions: Applying our method to public expression datasets concerning diabetes mellitus and atherosclerosis in liver tissue, we identify gender-specific differential networks. Results underscore the biological relevance of our approach in uncovering meaningful molecular distinctions.
Non parametric differential network analysis: a tool for unveiling specific molecular signatures
Guzzi P. H.;Veltri P.
2024-01-01
Abstract
Background: The rewiring of molecular interactions in various conditions leads to distinct phenotypic outcomes. Differential network analysis (DINA) is dedicated to exploring these rewirings within gene and protein networks. Leveraging statistical learning and graph theory, DINA algorithms scrutinize alterations in interaction patterns derived from experimental data. Results: Introducing a novel approach to differential network analysis, we incorporate differential gene expression based on sex and gender attributes. We hypothesize that gene expression can be accurately represented through non-Gaussian processes. Our methodology involves quantifying changes in non-parametric correlations among gene pairs and expression levels of individual genes. Conclusions: Applying our method to public expression datasets concerning diabetes mellitus and atherosclerosis in liver tissue, we identify gender-specific differential networks. Results underscore the biological relevance of our approach in uncovering meaningful molecular distinctions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.