We consider positive solutions to a class of quasilinear elliptic problems involving the Hardy potential under zero Dirichlet boundary condition. Via moving plane method, proving a weak comparison principle, we prove symmetry and monotonicity properties for the solutions defined on strictly convex symmetric domains.
Symmetry via the moving plane method for a class of quasilinear elliptic problems involving the Hardy potential
Chirillo G.;Montoro L.;Muglia L.;Sciunzi B.
2023-01-01
Abstract
We consider positive solutions to a class of quasilinear elliptic problems involving the Hardy potential under zero Dirichlet boundary condition. Via moving plane method, proving a weak comparison principle, we prove symmetry and monotonicity properties for the solutions defined on strictly convex symmetric domains.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.