Multivalued ∗ -nonexpansive mappings are studied in Banach spaces. The demiclosedness principle is established. Here we focus on the problem of solving a variational inequality which is defined on the set of fixed points of a multivalued ∗ -nonexpansive mapping. For this purpose, we introduce two algorithms approximating the unique solution of the variational inequality.

Some Results on the Approximation of Solutions of Variational Inequalities for Multivalued Maps on Banach Spaces

Muglia L.
;
Marino G.
2021-01-01

Abstract

Multivalued ∗ -nonexpansive mappings are studied in Banach spaces. The demiclosedness principle is established. Here we focus on the problem of solving a variational inequality which is defined on the set of fixed points of a multivalued ∗ -nonexpansive mapping. For this purpose, we introduce two algorithms approximating the unique solution of the variational inequality.
2021
iterative method
Strongly accretive operators
variational inequality problem
∗ -nonexpansive multivalued
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/377704
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact