We establish critical groups estimates for the weak solutions of −Δpu=f(x,u) in Ω and u=0 on ∂Ω via Morse index, where Ω is a bounded domain, f∈C1(Ω‾×R) and f(x,s)>0 for all x∈Ω‾, s>0 and f(x,s)=0 for all x∈Ω‾, s≤0. The proof relies on new uniform Sobolev inequalities for approximating problems. We also prove critical groups estimates when Ω is the ball or the annulus and f is a sign changing function.

Weighted Sobolev spaces and Morse estimates for quasilinear elliptic equations

Cingolani S.;Sciunzi B.
2024-01-01

Abstract

We establish critical groups estimates for the weak solutions of −Δpu=f(x,u) in Ω and u=0 on ∂Ω via Morse index, where Ω is a bounded domain, f∈C1(Ω‾×R) and f(x,s)>0 for all x∈Ω‾, s>0 and f(x,s)=0 for all x∈Ω‾, s≤0. The proof relies on new uniform Sobolev inequalities for approximating problems. We also prove critical groups estimates when Ω is the ball or the annulus and f is a sign changing function.
2024
Critical groups
p-Laplace equations
Regularity theory
Sobolev embeddings
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/377803
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact