In the endeavor to advance industrial engineering and management (IEM) education, this research underscores the imperative of supporting a dynamic and responsive adaptation of a competency-based curriculum (CBC) to meet the demands of an ever-evolving industrial landscape and job market. Our study contributes to competency-based education (CBE) by demonstrating how Artificial Intelligence (AI) can inform the definition of a CBC in the IEM field, thus initiating the pioneering steps towards a collaborative human-AI approach in CBC design. Through a stepwise methodology based on semantic analysis, text mining, natural language processing (NLP) models, informetrics approaches, and clustering algorithms, we provide data-driven insights to inform the curriculum development process. This approach enabled us to identify educational gap, particularly in domains such as digital twin engineering and human-centric IEM. Moreover, this study advocates for higher education institutions (HEIs) to embrace a more structured and collaborative approach to continuously developing competency-based curricula. In this perspective, AI (including generative AI) emerges as a valuable ally in curriculum design. This approach proves instrumental in crafting competitive and appealing curricula, especially at peripheral universities. This study culminates in an updated WING model showing how to build Industry 5.0 related curricula and a series of recommendations for engineering educators.

Towards human-AI collaboration in the competency-based curriculum development process: The case of industrial engineering and management education

Padovano, Antonio;Cardamone, Martina
2024-01-01

Abstract

In the endeavor to advance industrial engineering and management (IEM) education, this research underscores the imperative of supporting a dynamic and responsive adaptation of a competency-based curriculum (CBC) to meet the demands of an ever-evolving industrial landscape and job market. Our study contributes to competency-based education (CBE) by demonstrating how Artificial Intelligence (AI) can inform the definition of a CBC in the IEM field, thus initiating the pioneering steps towards a collaborative human-AI approach in CBC design. Through a stepwise methodology based on semantic analysis, text mining, natural language processing (NLP) models, informetrics approaches, and clustering algorithms, we provide data-driven insights to inform the curriculum development process. This approach enabled us to identify educational gap, particularly in domains such as digital twin engineering and human-centric IEM. Moreover, this study advocates for higher education institutions (HEIs) to embrace a more structured and collaborative approach to continuously developing competency-based curricula. In this perspective, AI (including generative AI) emerges as a valuable ally in curriculum design. This approach proves instrumental in crafting competitive and appealing curricula, especially at peripheral universities. This study culminates in an updated WING model showing how to build Industry 5.0 related curricula and a series of recommendations for engineering educators.
2024
Artificial intelligence
Competency-based education
Curriculum development
Engineering education
Industrial engineering and management
Industry 5.0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/378543
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact