The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key component of the DNA-PK complex that has a well-characterized function in the non-homologous end-joining repair of DNA double-strand breaks. Since its identification, a large body of evidence has demonstrated that DNA-PKcs is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis of cancer patients. Intriguingly, recent studies have suggested novel functions beyond the canonical role of DNA-PKcs, which has transformed the paradigm of DNA-PKcs in tumorigenesis and has reinvigorated the interest to target DNA-PKcs for cancer treatment. In this review, we update recent advances in DNA-PKcs, in particular the emerging roles in tumor metastasis, metabolic dysregulation, and immune escape. We further discuss the possible molecular basis that underpins the pleiotropism of DNA-PKcs in cancer. Finally, we outline the biomarkers that may predict the therapeutic response to DNA-PKcs inhibitor therapy. Understanding the functional repertoire of DNA-PKcs will provide mechanistic insights of DNA-PKcs in malignancy and, more importantly, may revolutionize the design and utility of DNA-PKcs-based precision cancer therapy.

Beyond DNA Repair: DNA-PKcs in Tumor Metastasis, Metabolism and Immunity

Schmid, Ralph A;
2020-01-01

Abstract

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a key component of the DNA-PK complex that has a well-characterized function in the non-homologous end-joining repair of DNA double-strand breaks. Since its identification, a large body of evidence has demonstrated that DNA-PKcs is frequently overexpressed in cancer, plays a critical role in tumor development and progression, and is associated with poor prognosis of cancer patients. Intriguingly, recent studies have suggested novel functions beyond the canonical role of DNA-PKcs, which has transformed the paradigm of DNA-PKcs in tumorigenesis and has reinvigorated the interest to target DNA-PKcs for cancer treatment. In this review, we update recent advances in DNA-PKcs, in particular the emerging roles in tumor metastasis, metabolic dysregulation, and immune escape. We further discuss the possible molecular basis that underpins the pleiotropism of DNA-PKcs in cancer. Finally, we outline the biomarkers that may predict the therapeutic response to DNA-PKcs inhibitor therapy. Understanding the functional repertoire of DNA-PKcs will provide mechanistic insights of DNA-PKcs in malignancy and, more importantly, may revolutionize the design and utility of DNA-PKcs-based precision cancer therapy.
2020
DNA damage response
DNA-dependent protein kinase catalytic subunit
biomarker
immunity
immunotherapy
metabolism
metastasis
targeted therapy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/379102
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact