By means of fixed point index theory for multivalued maps, we provide an analogue of the classical Birkhoff–Kellogg Theorem in the context of discontinuous operators acting on affine wedges in Banach spaces. Our theory is fairly general and can be applied, for example, to eigenvalues and parameter problems for ordinary differential equations with discontinuities. We illustrate in detail this fact for a class of second-order boundary value problem with deviated arguments and discontinuous terms. In a specific example, we explicitly compute the terms that occur in our theory.

A Birkhoff–Kellogg Type Theorem for Discontinuous Operators with Applications

Infante G.
;
2024-01-01

Abstract

By means of fixed point index theory for multivalued maps, we provide an analogue of the classical Birkhoff–Kellogg Theorem in the context of discontinuous operators acting on affine wedges in Banach spaces. Our theory is fairly general and can be applied, for example, to eigenvalues and parameter problems for ordinary differential equations with discontinuities. We illustrate in detail this fact for a class of second-order boundary value problem with deviated arguments and discontinuous terms. In a specific example, we explicitly compute the terms that occur in our theory.
2024
34K10
47H05
47H11
47H30
54H25
Birkhoff–Kellogg type result
deviated argument
discontinuous differential equation
multivalued map
Nontrivial solutions
Primary 47H10
Secondary 34A36
wedge
File in questo prodotto:
File Dimensione Formato  
s00009-024-02692-3.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 430.53 kB
Formato Adobe PDF
430.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380217
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact