Quasi Zero Stiffness (QZS) devices have received widespread interest due to their potential applications in vibration isolation and as nonlinear energy sinks. However, as the stiffness is driven towards zero, the response becomes dominated by the effects of damping and friction. This places a strong emphasis on accurate modelling of these effects if realistic results are to be achieved. This work analyses and experimentally demonstrates the complex responses that can occur in a frictional QZS device, including isolated response regions and non-sinusoidal responses. This is done using a simple device recently developed by the authors that allows accurate adjustment of the nonlinear force–displacement curve. Furthermore, high frequency disturbances on the frictional system are shown to introduce a damping effect on the low frequency behaviour, and an equivalent linear damping coefficient is derived.

Frictional phenomena within a quasi zero stiffness vibration device

Gatti, G.;
2024-01-01

Abstract

Quasi Zero Stiffness (QZS) devices have received widespread interest due to their potential applications in vibration isolation and as nonlinear energy sinks. However, as the stiffness is driven towards zero, the response becomes dominated by the effects of damping and friction. This places a strong emphasis on accurate modelling of these effects if realistic results are to be achieved. This work analyses and experimentally demonstrates the complex responses that can occur in a frictional QZS device, including isolated response regions and non-sinusoidal responses. This is done using a simple device recently developed by the authors that allows accurate adjustment of the nonlinear force–displacement curve. Furthermore, high frequency disturbances on the frictional system are shown to introduce a damping effect on the low frequency behaviour, and an equivalent linear damping coefficient is derived.
2024
Friction
Isola
Isolation
Nonlinear vibration
Quasi Zero Stiffness
File in questo prodotto:
File Dimensione Formato  
shaw_et_al_mssp_2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact