Hypothesis: Diphenyl phosphate (DPP)/bis(2-ethylhexyl) amine (BEEA) liquid mixtures are expected to show peculiar self-assembly behavior due to their, respectively, acidic and basic nature which can trigger acid-base reaction. Experiment: The properties of DPP/BEEA mixtures of different compositions are explored by a combined theoretical (Ab initio calculations) and experimental (rheology, X-ray and light scattering) approach. Findings: (i) a proton transfer from DPP to BEEA takes place with formation of cationic and anionic species in liquid phase (ion pair formation); (ii) due to the strong and long-range electrostatic interactions, each of the two charged species is preferentially surrounded by the other one, in a picture resembling the structure of ionic materials; (iii) this gives rise to a striking viscosity increase takes place as DPP concentration increases; (iv) the composition dependencies of all measured parameters show clear deviations around DPP molar fraction of 0.2, indicating unequivocally the formation of isolated domains, formed by DPP-BEEA pairs which coalescence/percolate into a unique, extended, network at higher DPP concentrations.

From proton transfer to ionic liquids: How isolated domains of ion pairs grow to form extended network in diphenyl phosphate-bis(2-ethylhexyl) amine mixtures

Caputo P.;Oliviero Rossi C.;
2024-01-01

Abstract

Hypothesis: Diphenyl phosphate (DPP)/bis(2-ethylhexyl) amine (BEEA) liquid mixtures are expected to show peculiar self-assembly behavior due to their, respectively, acidic and basic nature which can trigger acid-base reaction. Experiment: The properties of DPP/BEEA mixtures of different compositions are explored by a combined theoretical (Ab initio calculations) and experimental (rheology, X-ray and light scattering) approach. Findings: (i) a proton transfer from DPP to BEEA takes place with formation of cationic and anionic species in liquid phase (ion pair formation); (ii) due to the strong and long-range electrostatic interactions, each of the two charged species is preferentially surrounded by the other one, in a picture resembling the structure of ionic materials; (iii) this gives rise to a striking viscosity increase takes place as DPP concentration increases; (iv) the composition dependencies of all measured parameters show clear deviations around DPP molar fraction of 0.2, indicating unequivocally the formation of isolated domains, formed by DPP-BEEA pairs which coalescence/percolate into a unique, extended, network at higher DPP concentrations.
2024
Aggregation
Ionic liquids
Nanodomains
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact