This paper presents the results of an experimental study of freezing and thawing patterns of highways in Kazakhstan. Special sensors measure temperature and moisture change every hour in automatic mode. The purpose of this work is to develop a methodology for determining the depth of freezing of subgrade soils of roads of Kazakhstan, and the task is to establish the pattern of cold temperature change (temperature “0 °C”) through certain points (sensors) at any time. In the upper part of the pavement (up to 30–40 cm), the temperature changes in annual and daily cycles. As the depth increases, the daily temperature fluctuations disappear, leaving only the annual fluctuation. At a depth of 180 cm and below, temperature fluctuations occur only in the annual cycle. The freezing rate varied from 14 cm/day to 0.33 cm/day. The maximum freezing depth was 227 cm. The descending branch of thawing occurs almost uniformly, with an average rate of 6.25 cm/day to a depth of 220 cm; the average rate of the ascending branch of thawing is 0.9 cm/day. Asphalt–concrete layers of the pavement and the upper part of the subgrade were in a frozen state for 151 and 166 days, respectively. In the subgrade at the beginning and end of the cold period, there are abrupt changes in moisture, which are explained by phase transitions of the second order: the transition from the liquid state to the solid (ice) at the beginning of the cold period and the transition of moisture from the solid state to liquid at the end of the cold period.

Freezing and Thawing Processes of Highways in Kazakhstan

Oliviero Rossi C.;
2022-01-01

Abstract

This paper presents the results of an experimental study of freezing and thawing patterns of highways in Kazakhstan. Special sensors measure temperature and moisture change every hour in automatic mode. The purpose of this work is to develop a methodology for determining the depth of freezing of subgrade soils of roads of Kazakhstan, and the task is to establish the pattern of cold temperature change (temperature “0 °C”) through certain points (sensors) at any time. In the upper part of the pavement (up to 30–40 cm), the temperature changes in annual and daily cycles. As the depth increases, the daily temperature fluctuations disappear, leaving only the annual fluctuation. At a depth of 180 cm and below, temperature fluctuations occur only in the annual cycle. The freezing rate varied from 14 cm/day to 0.33 cm/day. The maximum freezing depth was 227 cm. The descending branch of thawing occurs almost uniformly, with an average rate of 6.25 cm/day to a depth of 220 cm; the average rate of the ascending branch of thawing is 0.9 cm/day. Asphalt–concrete layers of the pavement and the upper part of the subgrade were in a frozen state for 151 and 166 days, respectively. In the subgrade at the beginning and end of the cold period, there are abrupt changes in moisture, which are explained by phase transitions of the second order: the transition from the liquid state to the solid (ice) at the beginning of the cold period and the transition of moisture from the solid state to liquid at the end of the cold period.
2022
freezing
measuring station
moisture
pavement
road
subgrade
temperature
thawing
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/380821
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact