Sulfur dioxide (SO2) can be of natural and anthropogenic origin and is one of the sulfur compounds present in the atmosphere. Among natural sources, volcanoes contribute with relevant annual outputs, and major eruptions lead to spikes in these outputs. In the case of anthropogenic pollution, SO2 emissions are mostly correlated with the sulfur content of fuels, which has been the focus of specific emission mitigation policies for decades. Following other examples of cyclic and multi-year evaluations, an analysis of SO2 at the Lamezia Terme (code: LMT) WMO/GAW (World Meteorological Organization—Global Atmosphere Watch) station in Calabria, Southern Italy, was performed. The coastal site is characterized by wind circulation patterns that result in the detection of air masses with low or enhanced anthropic influences. The presence of the Aeolian Arc of active, quiescent, and extinct volcanoes, as well as Mount Etna in Sicily, may influence LMT observations with diffused SO2 emissions. For the first time in the history of the LMT, a multi-year analysis of a parameter has been integrated with TROPOMI data gathered by Sentinel-5P and used to test total tropospheric column densities at the LMT itself and select coordinates in the Tyrrhenian and Ionian seas. Surface and satellite data indicate that SO2 peaks at the LMT are generally linked to winds from the western–seaside wind corridor, a pattern that is compatible with active volcanism in the Tyrrhenian Sea and maritime shipping to and from the Gioia Tauro port located in the same region. The findings of this research provide the basis for enhanced source apportionment, which could further differentiate anthropogenic sources in the area from natural outputs.

Integrated Surface and Tropospheric Column Analysis of Sulfur Dioxide Variability at the Lamezia Terme WMO/GAW Regional Station in Calabria, Southern Italy

D'Amico, Francesco
Conceptualization
;
Malacaria, Luana;Sinopoli, Salvatore;De Benedetto, Giorgia;Calidonna, Claudia Roberta
2025-01-01

Abstract

Sulfur dioxide (SO2) can be of natural and anthropogenic origin and is one of the sulfur compounds present in the atmosphere. Among natural sources, volcanoes contribute with relevant annual outputs, and major eruptions lead to spikes in these outputs. In the case of anthropogenic pollution, SO2 emissions are mostly correlated with the sulfur content of fuels, which has been the focus of specific emission mitigation policies for decades. Following other examples of cyclic and multi-year evaluations, an analysis of SO2 at the Lamezia Terme (code: LMT) WMO/GAW (World Meteorological Organization—Global Atmosphere Watch) station in Calabria, Southern Italy, was performed. The coastal site is characterized by wind circulation patterns that result in the detection of air masses with low or enhanced anthropic influences. The presence of the Aeolian Arc of active, quiescent, and extinct volcanoes, as well as Mount Etna in Sicily, may influence LMT observations with diffused SO2 emissions. For the first time in the history of the LMT, a multi-year analysis of a parameter has been integrated with TROPOMI data gathered by Sentinel-5P and used to test total tropospheric column densities at the LMT itself and select coordinates in the Tyrrhenian and Ionian seas. Surface and satellite data indicate that SO2 peaks at the LMT are generally linked to winds from the western–seaside wind corridor, a pattern that is compatible with active volcanism in the Tyrrhenian Sea and maritime shipping to and from the Gioia Tauro port located in the same region. The findings of this research provide the basis for enhanced source apportionment, which could further differentiate anthropogenic sources in the area from natural outputs.
2025
sulfur dioxide; GAW; Lamezia Terme; Mediterranean basin; Tyrrhenian Sea; Ionian Sea; surface measurements; TROPOMI; tropospheric column data
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/381621
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact