Cement composites containing different carbon nanomaterials, namely graphene technical grade, graphene super grade, and graphene oxide, up to 1.0% by weight of cement, were prepared. Ultrasonic, chemical, and thermochemical treatments were applied to improve the stability of the dispersions containing the graphene-based nanomaterials. Their exfoliation was analyzed using Raman spectroscopy, and the stability of the dispersions was quantitatively investigated by means of the static multiple light scattering (SMLS) technique. The sonication process enhanced the intensity of the 2D band of graphene technical grade, suggesting a partial degree of exfoliation, while the hydrothermal treatment with sodium cholate significantly promoted the stability of its dispersion. The effect of the addition of selected graphene-based nanomaterials in mortars was evaluated in terms of fresh state properties, mechanical strength, capillary water absorption, and pore size distribution. Workability decreased with the increase in the amount of carbon nanomaterials. Field emission scanning electron microscopy (FESEM) was also employed to characterize the microstructure of pristine graphene-based nanomaterials and their inclusion within the cement matrix. Our results suggest that mechanical properties are only moderately affected by the inclusion of all additives, whereas the introduction of graphene significantly influences the coefficient of capillary water absorption. Specifically, a reduction of about 20% in the capillary water absorption coefficient was observed at the concentration of 1.0 wt% of graphene technical grade, which is ascribed to a refinement of the porosity.

On the Stability of Graphene-Based Aqueous Dispersions and Their Performance in Cement Mortar

Teresa Gerace
Membro del Collaboration Group
;
Sebastiano Candamano
Membro del Collaboration Group
;
Simone Bartucci
Membro del Collaboration Group
;
Carlo Poselle Bonaventura
Membro del Collaboration Group
;
Alfonso Policicchio
Membro del Collaboration Group
;
Raffaele Giuseppe Agostino
Membro del Collaboration Group
;
Mariano Davoli
Membro del Collaboration Group
;
Andrea Scarcello
Membro del Collaboration Group
;
L Caputi;Daniela Pacile
2025-01-01

Abstract

Cement composites containing different carbon nanomaterials, namely graphene technical grade, graphene super grade, and graphene oxide, up to 1.0% by weight of cement, were prepared. Ultrasonic, chemical, and thermochemical treatments were applied to improve the stability of the dispersions containing the graphene-based nanomaterials. Their exfoliation was analyzed using Raman spectroscopy, and the stability of the dispersions was quantitatively investigated by means of the static multiple light scattering (SMLS) technique. The sonication process enhanced the intensity of the 2D band of graphene technical grade, suggesting a partial degree of exfoliation, while the hydrothermal treatment with sodium cholate significantly promoted the stability of its dispersion. The effect of the addition of selected graphene-based nanomaterials in mortars was evaluated in terms of fresh state properties, mechanical strength, capillary water absorption, and pore size distribution. Workability decreased with the increase in the amount of carbon nanomaterials. Field emission scanning electron microscopy (FESEM) was also employed to characterize the microstructure of pristine graphene-based nanomaterials and their inclusion within the cement matrix. Our results suggest that mechanical properties are only moderately affected by the inclusion of all additives, whereas the introduction of graphene significantly influences the coefficient of capillary water absorption. Specifically, a reduction of about 20% in the capillary water absorption coefficient was observed at the concentration of 1.0 wt% of graphene technical grade, which is ascribed to a refinement of the porosity.
2025
graphene; cement mortars; capillary water absorption; porosimetry
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/384577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact