In this paper we tackle the problem of deploying mobile wireless sensors while maintaining connectivity with a sink throughout the deployment process. These mobile sensors should discover some points of interest (PoI) in an autonomous way and continuously report information from the observed events to the sink. Unlike previous works, we design an algorithm that uses only local information and local interactions with surrounding sensors. Moreover, unlike other approaches, our algorithm implements both the discovery and the coverage phase. In the discovery phase, the mobile sensors spread to discover new events all over the field and in the second phase, they shrink to concentrate only on the discovered events, named points of interest. We prove that connectivity is preserved during both phases and the spreading phase is terminated in a reasonable amount of time. Real experiments are conducted for small-scale scenarios that are used as a “proof of concept”, while extensive simulations are performed for more complex scenarios to evaluate the algorithm performance. A comparison with an existing work which uses virtual forces has been made as well. The results show the capability of our algorithm to scale fast in both discovery, coverage and shrinking phases.

Spread and shrink: Point of interest discovery and coverage with mobile wireless sensors

Natalizio E.;
2017-01-01

Abstract

In this paper we tackle the problem of deploying mobile wireless sensors while maintaining connectivity with a sink throughout the deployment process. These mobile sensors should discover some points of interest (PoI) in an autonomous way and continuously report information from the observed events to the sink. Unlike previous works, we design an algorithm that uses only local information and local interactions with surrounding sensors. Moreover, unlike other approaches, our algorithm implements both the discovery and the coverage phase. In the discovery phase, the mobile sensors spread to discover new events all over the field and in the second phase, they shrink to concentrate only on the discovered events, named points of interest. We prove that connectivity is preserved during both phases and the spreading phase is terminated in a reasonable amount of time. Real experiments are conducted for small-scale scenarios that are used as a “proof of concept”, while extensive simulations are performed for more complex scenarios to evaluate the algorithm performance. A comparison with an existing work which uses virtual forces has been made as well. The results show the capability of our algorithm to scale fast in both discovery, coverage and shrinking phases.
2017
Connectivity
Coverage
Deployment
Discovery
Mobile wireless sensor networks
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/384879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact