The "Most Probable World" (MPW) problem in probabilistic logic programming (PLPs) is that of finding a possible world with the highest probability. Past work has shown that this problem is computationally intractable and involves solving exponentially many linear programs, each of which is of exponential size. In this paper, we study what happens when the user focuses his interest on a set of atoms in such a PLP. We show that we can significantly reduce the number of worlds to be considered by defining a "reduced" linear program whose solution is in one-one correspondence with the exact solution to the MPW problem. However, the problem is still intractable. We develop a Monte Carlo sampling approach that enables us to build a quick approximation of the reduced linear program that allows us to estimate (inexactly) the solution to the MPW problem. We show experimentally that our approach works well in practice, scaling well to problems where the exact solution is intractable to compute. © 2012 Springer Science+Business Media B.V.

Focused most probable world computations in probabilistic logic programs

Simari G. I.;Martinez M. V.;Subrahmanian V. S.
2012-01-01

Abstract

The "Most Probable World" (MPW) problem in probabilistic logic programming (PLPs) is that of finding a possible world with the highest probability. Past work has shown that this problem is computationally intractable and involves solving exponentially many linear programs, each of which is of exponential size. In this paper, we study what happens when the user focuses his interest on a set of atoms in such a PLP. We show that we can significantly reduce the number of worlds to be considered by defining a "reduced" linear program whose solution is in one-one correspondence with the exact solution to the MPW problem. However, the problem is still intractable. We develop a Monte Carlo sampling approach that enables us to build a quick approximation of the reduced linear program that allows us to estimate (inexactly) the solution to the MPW problem. We show experimentally that our approach works well in practice, scaling well to problems where the exact solution is intractable to compute. © 2012 Springer Science+Business Media B.V.
2012
Imprecise probabilities
Most probable worlds
Probabilistic logic programming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/386128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact