In this paper, we present analytical results for the so-called forward lateral photovoltage scanning (LPS) problem. The (inverse) LPS model predicts doping variations in crystal by measuring the current leaving the crystal generated by a laser at various positions. The forward model consists of a set of nonlinear elliptic equations coupled with a measuring device modeled by a resistance. Standard methods to ensure the existence and uniqueness of the forward model cannot be used in a straightforward manner due to the presence of an additional generation term modeling the effect of the laser on the crystal. Hence, we scale the original forward LPS problem and employ a perturbation approach to derive the leading order system and the correction up to the second order in an appropriate small parameter. While these simplifications pose no issues from a physical standpoint, they enable us to demonstrate the analytic existence and uniqueness of solutions for the simplified system using standard arguments from elliptic theory adapted to the coupling with the measuring device.

Forward lateral photovoltage scanning problem: Perturbation approach and existence-uniqueness analysis

Ali', Giuseppe;Rotundo, Nella
2025-01-01

Abstract

In this paper, we present analytical results for the so-called forward lateral photovoltage scanning (LPS) problem. The (inverse) LPS model predicts doping variations in crystal by measuring the current leaving the crystal generated by a laser at various positions. The forward model consists of a set of nonlinear elliptic equations coupled with a measuring device modeled by a resistance. Standard methods to ensure the existence and uniqueness of the forward model cannot be used in a straightforward manner due to the presence of an additional generation term modeling the effect of the laser on the crystal. Hence, we scale the original forward LPS problem and employ a perturbation approach to derive the leading order system and the correction up to the second order in an appropriate small parameter. While these simplifications pose no issues from a physical standpoint, they enable us to demonstrate the analytic existence and uniqueness of solutions for the simplified system using standard arguments from elliptic theory adapted to the coupling with the measuring device.
2025
Charge transport
Drift-diffusion model
Existence and uniqueness
Lateral photovoltage scanning method (LPS)
Perturbation analysis
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X24006474-main.pdf

accesso aperto

Licenza: Creative commons
Dimensione 804.88 kB
Formato Adobe PDF
804.88 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/388779
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact