This article proposes numerical algorithms for solving second-order and telegraph linear partial differential equations using a matrix approach that employs certain generalized Chebyshev polynomials as basis functions. This approach uses the operational matrix of derivatives of the generalized Chebyshev polynomials and applies the collocation method to convert the equations with their underlying conditions into algebraic systems of equations that can be numerically treated. The convergence and error bounds are examined deeply. Some numerical examples are shown to demonstrate the efficiency and applicability of the proposed algorithms.

A New Generalized Chebyshev Matrix Algorithm for Solving Second-Order and Telegraph Partial Differential Equations

Napoli A.;
2024-01-01

Abstract

This article proposes numerical algorithms for solving second-order and telegraph linear partial differential equations using a matrix approach that employs certain generalized Chebyshev polynomials as basis functions. This approach uses the operational matrix of derivatives of the generalized Chebyshev polynomials and applies the collocation method to convert the equations with their underlying conditions into algebraic systems of equations that can be numerically treated. The convergence and error bounds are examined deeply. Some numerical examples are shown to demonstrate the efficiency and applicability of the proposed algorithms.
2024
Chebyshev polynomials
collocation method
convergence analysis
derivative formulas
matrix approach
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/388998
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact