Conventional wastewater treatment plants (WWTPs) have limited efficiency in removing emerging pollutants (EPs), meaning these pollutants persist and lead to widespread ecological contamination. In this study, real effluents from a WWTP were characterized using TOC and Py-GC/MS, which indicated the presence of various organic compounds that could be indicative of micro-nanoplastics (MNPs) or plastics additives. To address this challenge, we propose the use of a photocatalytic membrane reactor (PMR) as an advanced treatment system capable of achieving high degradation efficiency under mild operating conditions. Preliminary experimental tests were conducted using various commercial photocatalysts (TiO2, WO3, Nb2O5), four UV lamps, and oxidants (air, O2) using added Gemfibrozil (GEM) as a drug model compound. Real effluent samples collected from WWTP were tested with and without pretreatment to remove coarse particles prior to photocatalysis. Mineralization was achieved in both cases, but it occurred at a higher rate for the pretreated effluent. The mineralization of GEM and EPs in real effluent was achieved within five hours under UV irradiation using titanium dioxide (TiO2) as a low-cost photocatalyst in a PMR. The results highlight the potential of photocatalytic systems, and particularly PMRs, as a promising technology for removing recalcitrant pollutants in real effluents offering a viable solution for improved environmental protection.
Photocatalytic Mineralization of Emerging Organic Contaminants Using Real and Simulated Effluents in Batch and Membrane Photoreactors
Lavorato, Cristina
;Severino, Angela;Argurio, Pietro;Molinari, Raffaele
;
2025-01-01
Abstract
Conventional wastewater treatment plants (WWTPs) have limited efficiency in removing emerging pollutants (EPs), meaning these pollutants persist and lead to widespread ecological contamination. In this study, real effluents from a WWTP were characterized using TOC and Py-GC/MS, which indicated the presence of various organic compounds that could be indicative of micro-nanoplastics (MNPs) or plastics additives. To address this challenge, we propose the use of a photocatalytic membrane reactor (PMR) as an advanced treatment system capable of achieving high degradation efficiency under mild operating conditions. Preliminary experimental tests were conducted using various commercial photocatalysts (TiO2, WO3, Nb2O5), four UV lamps, and oxidants (air, O2) using added Gemfibrozil (GEM) as a drug model compound. Real effluent samples collected from WWTP were tested with and without pretreatment to remove coarse particles prior to photocatalysis. Mineralization was achieved in both cases, but it occurred at a higher rate for the pretreated effluent. The mineralization of GEM and EPs in real effluent was achieved within five hours under UV irradiation using titanium dioxide (TiO2) as a low-cost photocatalyst in a PMR. The results highlight the potential of photocatalytic systems, and particularly PMRs, as a promising technology for removing recalcitrant pollutants in real effluents offering a viable solution for improved environmental protection.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


