This paper addresses the problem of subsurface target localization from single-snapshot multimonostatic and multifrequency radar measurements. In this context, the use of subspace projection methods—known for their super-resolution capabilities—is hindered by the rank deficiency of the data correlation matrix and the lack of a Vandermonde structure, especially in near-field configurations and layered media. To overcome this issue, we propose a novel pre-processing strategy that transforms the measured data into the (Formula presented.) domain, thereby restoring the structural conditions required for subspace-based detection. The resulting algorithm, referred to as (Formula presented.) MUSIC, enables the application of subspace projection techniques in scenarios where traditional smoothing procedures are not viable. Numerical experiments in a 2-D scalar configuration demonstrate the effectiveness of the proposed method in terms of resolution and robustness under various noise conditions. A Monte Carlo simulation study is also included to provide a quantitative assessment of localization accuracy. Comparisons with conventional migration imaging highlight the superior performance of the proposed approach.
ω − k MUSIC Algorithm for Subsurface Target Localization
Cuccaro, Antonio;
2025-01-01
Abstract
This paper addresses the problem of subsurface target localization from single-snapshot multimonostatic and multifrequency radar measurements. In this context, the use of subspace projection methods—known for their super-resolution capabilities—is hindered by the rank deficiency of the data correlation matrix and the lack of a Vandermonde structure, especially in near-field configurations and layered media. To overcome this issue, we propose a novel pre-processing strategy that transforms the measured data into the (Formula presented.) domain, thereby restoring the structural conditions required for subspace-based detection. The resulting algorithm, referred to as (Formula presented.) MUSIC, enables the application of subspace projection techniques in scenarios where traditional smoothing procedures are not viable. Numerical experiments in a 2-D scalar configuration demonstrate the effectiveness of the proposed method in terms of resolution and robustness under various noise conditions. A Monte Carlo simulation study is also included to provide a quantitative assessment of localization accuracy. Comparisons with conventional migration imaging highlight the superior performance of the proposed approach.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


