Coronary microvascular disease (CMD) comprises a spectrum of conditions characterized by the functional and structural abnormalities of coronary microcirculation, affecting vessels typically smaller than 500 μm. Despite its clinical significance as a contributor to myocardial ischemia, CMD frequently remains underdiagnosed due to the limitations of current diagnostic approaches. Invasive testing, including coronary reactivity assessment, is considered the gold standard, but it is resource-intensive and not always accessible. Non-invasive methods, such as positron emission tomography (PET) and transthoracic Doppler echocardiography (TTDE), offer alternatives but are limited by varying accuracy and accessibility. Amid these diagnostic challenges, there is increasing interest in circulating biomarkers as adjuncts in CMD evaluation. Biomarkers associated with endothelial dysfunction, inflammation, and oxidative stress, detectable through routine blood tests, may assist in CMD diagnosis, risk stratification, and therapeutic monitoring. These biomarkers can offer insights into CMD pathogenesis and enable early, non-invasive screening to identify patients who may benefit from more invasive investigations. This narrative review examines studies assessing biomarkers in CMD patients with diagnoses confirmed through invasive techniques. Our objective is to focus on circulating biomarkers linked to the invasive evaluation of coronary microcirculation, aiming to advance the understanding of the underlying mechanisms of this prevalent condition and enhance diagnostic accuracy and the clinical management of affected patients.

The Role of Circulating Biomarkers in Patients with Coronary Microvascular Disease

Quarta, Rossella;Martino, Giovanni;Lopes, Giovanni;Indolfi, Ciro;Curcio, Antonio;Polimeni, Alberto
2025-01-01

Abstract

Coronary microvascular disease (CMD) comprises a spectrum of conditions characterized by the functional and structural abnormalities of coronary microcirculation, affecting vessels typically smaller than 500 μm. Despite its clinical significance as a contributor to myocardial ischemia, CMD frequently remains underdiagnosed due to the limitations of current diagnostic approaches. Invasive testing, including coronary reactivity assessment, is considered the gold standard, but it is resource-intensive and not always accessible. Non-invasive methods, such as positron emission tomography (PET) and transthoracic Doppler echocardiography (TTDE), offer alternatives but are limited by varying accuracy and accessibility. Amid these diagnostic challenges, there is increasing interest in circulating biomarkers as adjuncts in CMD evaluation. Biomarkers associated with endothelial dysfunction, inflammation, and oxidative stress, detectable through routine blood tests, may assist in CMD diagnosis, risk stratification, and therapeutic monitoring. These biomarkers can offer insights into CMD pathogenesis and enable early, non-invasive screening to identify patients who may benefit from more invasive investigations. This narrative review examines studies assessing biomarkers in CMD patients with diagnoses confirmed through invasive techniques. Our objective is to focus on circulating biomarkers linked to the invasive evaluation of coronary microcirculation, aiming to advance the understanding of the underlying mechanisms of this prevalent condition and enhance diagnostic accuracy and the clinical management of affected patients.
2025
circulating biomarkers
coronary flow reserve (CFR)
coronary microvascular dysfunction (CMD)
index of microvascular resistance (IMR)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/391123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact