The Sierpinski curve is one of the most known space-filling curves and one with the highest number of applications. We present a recently proposed computational methodology based on the infinite quantity called grossone to investigate the behavior of two different constructions of the Sierpinski curve. We emphasize that, adopting this point of view, we have infinitely many Sierpinski curves depending, contrarily to traditional analysis, on each specific starting configuration. Of particular interest are some power series expansions in the new infinitesimal quantities emerging from the study of the considered curves.

The Sierpinski curve viewed by numerical computations with infinities and infinitesimals

Caldarola F.
2018-01-01

Abstract

The Sierpinski curve is one of the most known space-filling curves and one with the highest number of applications. We present a recently proposed computational methodology based on the infinite quantity called grossone to investigate the behavior of two different constructions of the Sierpinski curve. We emphasize that, adopting this point of view, we have infinitely many Sierpinski curves depending, contrarily to traditional analysis, on each specific starting configuration. Of particular interest are some power series expansions in the new infinitesimal quantities emerging from the study of the considered curves.
2018
Fractal geometry
Fractals
Grossone
Numerical infinities and infinitesimals
Sierpinski curve
Space-filling curves
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/391564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 35
social impact