Let K/k be a Z_p-extension of a number field k, k_n its n-th layer and A_n the p-class group of k_n. In this paper we give two criteria, both based on the group of invariants B_n of A_n, which imply the finiteness of the Iwasawa module X(K/k) and we discuss some of their consequences. The first criterion deals with stabilization and capitulation of the B_n, while the second one uses the nilpotency of the Galois group Gal(L(K)/k), where L(K) is the maximal unramified abelian pro-p-extension of K.

Invariants and coinvariants of class groups in Zp-extensions and Greenberg's Conjecture

Caldarola F.
2016-01-01

Abstract

Let K/k be a Z_p-extension of a number field k, k_n its n-th layer and A_n the p-class group of k_n. In this paper we give two criteria, both based on the group of invariants B_n of A_n, which imply the finiteness of the Iwasawa module X(K/k) and we discuss some of their consequences. The first criterion deals with stabilization and capitulation of the B_n, while the second one uses the nilpotency of the Galois group Gal(L(K)/k), where L(K) is the maximal unramified abelian pro-p-extension of K.
2016
Capitulation of ideals
Class groups
Iwasawa modules
Lower central series
Z
p
-extensions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/391565
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact