High-strength polymer fibers such as nylon 6, nylon 6,6, and polyethylene are utilized to produce Twisted and Coiled Artificial Muscles (TCAMs) through the twisting of low-cost fibers. These artificial muscles exhibit high displacement and specific power, particularly under electrothermal actuation, which requires conductive elements. An experimental setup was developed to produce, thermally treat, and characterize commercially available nylon 6,6 fibers coated with silver. The results demonstrate that TCAMs can contract by over 15% and generate forces up to 2.5 N with minimal energy input. Key factors such as motor speed, applied load, and fiber geometry affect the overall performance.
Production Parameters and Thermo-Mechanical Performance of Twisted and Coiled Artificial Muscles (TCAMs)
Garofalo, Salvatore
;Morano, Chiara;Pagnotta, Leonardo;Bruno, Luigi
2025-01-01
Abstract
High-strength polymer fibers such as nylon 6, nylon 6,6, and polyethylene are utilized to produce Twisted and Coiled Artificial Muscles (TCAMs) through the twisting of low-cost fibers. These artificial muscles exhibit high displacement and specific power, particularly under electrothermal actuation, which requires conductive elements. An experimental setup was developed to produce, thermally treat, and characterize commercially available nylon 6,6 fibers coated with silver. The results demonstrate that TCAMs can contract by over 15% and generate forces up to 2.5 N with minimal energy input. Key factors such as motor speed, applied load, and fiber geometry affect the overall performance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


