Twisted bilayer graphene exhibits isolated, relatively flat electronic bands near charge neutrality when the interlayer rotation is tuned to specific magic angles. These small misalignments, typically below 1.1°, result in long-period moiré patterns with anomalous electronic properties, posing severe challenges for accurate atomistic simulations due to the large supercell sizes required. Here, we introduce a framework to map arbitrarily stacked graphene bilayers, characterized by specific rotation angles corresponding to precise interplanar distances, onto an equivalence class represented by magic-angle twisted bilayer graphene. Using a continuum model, we derive the equivalence relation defining this class and extend its implementation to tight-binding approaches. We further explore the applicability of this mapping within density functional theory, demonstrating that the magic-angle physics can be efficiently studied using twisted bilayer graphene configurations with larger stacking angles and computationally manageable supercell sizes. This approach offers a pathway for ab initio investigations into unconventional topological phases and emergent excitations in the low-energy quasi-flat bands of twisted bilayer materials.

Magic distances in twisted bilayer graphene

Palamara, Antonio;Pisarra, Michele
;
Sindona, Antonello
2025-01-01

Abstract

Twisted bilayer graphene exhibits isolated, relatively flat electronic bands near charge neutrality when the interlayer rotation is tuned to specific magic angles. These small misalignments, typically below 1.1°, result in long-period moiré patterns with anomalous electronic properties, posing severe challenges for accurate atomistic simulations due to the large supercell sizes required. Here, we introduce a framework to map arbitrarily stacked graphene bilayers, characterized by specific rotation angles corresponding to precise interplanar distances, onto an equivalence class represented by magic-angle twisted bilayer graphene. Using a continuum model, we derive the equivalence relation defining this class and extend its implementation to tight-binding approaches. We further explore the applicability of this mapping within density functional theory, demonstrating that the magic-angle physics can be efficiently studied using twisted bilayer graphene configurations with larger stacking angles and computationally manageable supercell sizes. This approach offers a pathway for ab initio investigations into unconventional topological phases and emergent excitations in the low-energy quasi-flat bands of twisted bilayer materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/393499
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact