This paper deals with a Magnetic Resonance micro-Imaging (MRI) analysis of asymptotic kinematics which is a condition adopted in some rheological characterisations. Asymptotic kinematics (for example the slow shearing) aim is to evaluate material properties at "equilibrium", avoiding structural changes induced by external stimuli. Measured material functions in these mechanical conditions deal with the structure/morphology of materials and can be used to investigate the structure as a function of the state variables only, as temperature, pressure and composition. In this paper MRI experiments were performed to study some shear flow behaviours of surfactant wormy micelles made by lecithin/water and diluted in cyclohexane (reverse micellar phase L2). MRI was used as a non-invasive tool in order to follow the structural responses both during slow shearing and when the sample is stirred outside the linear behaviour range. Relations can be found between the typical NMR parameters, strictly related to the microstructure, and the rheological macroscopic parameters as zero-shear viscosity.

MRI Experiments as a Tool to Study Asymptotic-Shear Flow Behaviour of a Worm-Like Reverse Micellar Phase

COPPOLA L;GABRIELE, DOMENICO;NICOTERA, ISABELLA;OLIVIERO ROSSI, Cesare
2006-01-01

Abstract

This paper deals with a Magnetic Resonance micro-Imaging (MRI) analysis of asymptotic kinematics which is a condition adopted in some rheological characterisations. Asymptotic kinematics (for example the slow shearing) aim is to evaluate material properties at "equilibrium", avoiding structural changes induced by external stimuli. Measured material functions in these mechanical conditions deal with the structure/morphology of materials and can be used to investigate the structure as a function of the state variables only, as temperature, pressure and composition. In this paper MRI experiments were performed to study some shear flow behaviours of surfactant wormy micelles made by lecithin/water and diluted in cyclohexane (reverse micellar phase L2). MRI was used as a non-invasive tool in order to follow the structural responses both during slow shearing and when the sample is stirred outside the linear behaviour range. Relations can be found between the typical NMR parameters, strictly related to the microstructure, and the rheological macroscopic parameters as zero-shear viscosity.
2006
Asymptotic kinematics; Micellar phase; MRI; Slow flow
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/130497
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact