Process mining techniques have recently received notable attention in the literature for their ability to assist in the (re)design of complex processes by automatically discovering models that explain the events registered in some log traces provided as input. Following this line of research, the paper investigates an extension of such basic approaches, where the identification of different variants for the process is explicitly accounted for, based on the clustering of log traces. Indeed, modeling each group of similar executions with a different schema allows us to single out “conformant” models, which, specifically, minimize the number of modeled enactments that are extraneous to the process semantics. Therefore, a novel process mining framework is introduced and some relevant computational issues are deeply studied. As finding an exact solution to such an enhanced process mining problem is proven to require high computational costs, in most practical cases, a greedy approach is devised. This is founded on an iterative, hierarchical, refinement of the process model, where, at each step, traces sharing similar behavior patterns are clustered together and equipped with a specialized schema. The algorithm guarantees that each refinement leads to an increasingly sound model, thus attaining a monotonic search. Experimental results evidence the validity of the approach with respect to both effectiveness and scalability.

Discovering expressive process models by clustering log traces

GRECO, Gianluigi;GUZZO, Antonella;Sacca' D.
2006-01-01

Abstract

Process mining techniques have recently received notable attention in the literature for their ability to assist in the (re)design of complex processes by automatically discovering models that explain the events registered in some log traces provided as input. Following this line of research, the paper investigates an extension of such basic approaches, where the identification of different variants for the process is explicitly accounted for, based on the clustering of log traces. Indeed, modeling each group of similar executions with a different schema allows us to single out “conformant” models, which, specifically, minimize the number of modeled enactments that are extraneous to the process semantics. Therefore, a novel process mining framework is introduced and some relevant computational issues are deeply studied. As finding an exact solution to such an enhanced process mining problem is proven to require high computational costs, in most practical cases, a greedy approach is devised. This is founded on an iterative, hierarchical, refinement of the process model, where, at each step, traces sharing similar behavior patterns are clustered together and equipped with a specialized schema. The algorithm guarantees that each refinement leads to an increasingly sound model, thus attaining a monotonic search. Experimental results evidence the validity of the approach with respect to both effectiveness and scalability.
2006
Process mining; Data mining; Workflow management; Clustering; Classification; Association rules
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/134077
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 282
  • ???jsp.display-item.citation.isi??? 195
social impact