We propose independence and conditional coverage tests aimed at evaluating the accuracy of Value-at-Risk (VaR) forecasts from the same model at different confidence levels. The proposed procedures are multilevel tests, i.e. joint tests of several quantiles corresponding to different confidence levels. In a comprehensive Monte Carlo exercise, we document the superiority of the proposed tests with respect to existing multilevel tests. In an empirical application, we illustrate the implementation of the tests using several VaR models and daily data for 15 MSCI world indices.

Evaluating the Accuracy of Value-at-Risk Forecasts: New Multilevel Tests

LECCADITO, ARTURO;
2014-01-01

Abstract

We propose independence and conditional coverage tests aimed at evaluating the accuracy of Value-at-Risk (VaR) forecasts from the same model at different confidence levels. The proposed procedures are multilevel tests, i.e. joint tests of several quantiles corresponding to different confidence levels. In a comprehensive Monte Carlo exercise, we document the superiority of the proposed tests with respect to existing multilevel tests. In an empirical application, we illustrate the implementation of the tests using several VaR models and daily data for 15 MSCI world indices.
2014
Risk Management; Value-at-Risk; Backtesting
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/134611
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact