Using nematic liquid crystal cells aligned by conductive polymers, like polyaniline or doped polypyrrole, a very fast electro-optic response is observed. We show that when a switch that interrupts the voltage across the cell is placed between the cell and the ground, the largest voltage drop is on the switch in its open position. The voltage distribution among the nematic cell and the switch is evaluated. The role played in this very fast electro-optic response of the ionic charges built on the interfaces together with the redox processes among the free charges in the polymer-liquid crystal interface is also described. For an asymmetric cell (only one side covered with a conductive polymer) a rectifying effect appears. In this case a circuital model is used to mimic the steplike behavior of the transmitted light during the relaxation of the system
Mechanisms leading to fast relaxation of liquid crystal cells aligned with conductive polymers
SCARAMUZZA, Nicola;BARTOLINO, Roberto;
2010-01-01
Abstract
Using nematic liquid crystal cells aligned by conductive polymers, like polyaniline or doped polypyrrole, a very fast electro-optic response is observed. We show that when a switch that interrupts the voltage across the cell is placed between the cell and the ground, the largest voltage drop is on the switch in its open position. The voltage distribution among the nematic cell and the switch is evaluated. The role played in this very fast electro-optic response of the ionic charges built on the interfaces together with the redox processes among the free charges in the polymer-liquid crystal interface is also described. For an asymmetric cell (only one side covered with a conductive polymer) a rectifying effect appears. In this case a circuital model is used to mimic the steplike behavior of the transmitted light during the relaxation of the systemI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.